Coset Graphs and Modular Surfaces
نویسندگان
چکیده
We establish a correspondence between generalized quiver gauge theories in four dimensions and congruence subgroups of the modular group, hinging upon the trivalent graphs which arise in both. The gauge theories and the graphs are enumerated and their numbers are compared. The correspondence is particularly striking for genus zero torsion-free congruence subgroups as exemplified by those which arise in Moonshine. We analyze in detail the case of index 24, where modular elliptic K3 surfaces emerge: here, the elliptic j-invariants can be recast as dessins d’enfant which dictate the SeibergWitten curves. 1 ar X iv :1 20 1. 36 33 v2 [ he pth ] 1 1 A pr 2 01 2
منابع مشابه
Partial proof of Graham Higman's conjecture related to coset diagrams
Graham Higman has defined coset diagrams for PSL(2,ℤ). These diagrams are composed of fragments, and the fragments are further composed of two or more circuits. Q. Mushtaq has proved in 1983 that existence of a certain fragment γ of a coset diagram in a coset diagram is a polynomial f in ℤ[z]. Higman has conjectured that, the polynomials related to the fragments are monic and for a fixed degree...
متن کاملDefining relations of a group $Gamma= G^{3,4}(2,Z)$ and its action on real quadratic field
In this paper, we have shown that the coset diagrams for the action of a linear-fractional group $Gamma$ generated by the linear-fractional transformations $r:zrightarrow frac{z-1}{z}$ and $s:zrightarrow frac{-1}{2(z+1)}$ on the rational projective line is connected and transitive. By using coset diagrams, we have shown that $r^{3}=s^{4}=1$ are defining relations for $Gamma$. Furt...
متن کاملMaps in Locally Orientable Surfaces, the Double Coset Algebra, and Zonal Polynomials
The genus series is the generating series for the number of maps (inequivalent two-cell embeddings of graphs), in locally orientable surfaces, closed and without boundary, with respect to vertexand face-degrees, number of edges and genus. A hypermap is a face two-colourable map. An expression for the genus series for (rooted) hypermaps is derived in terms of zonal polynomials by using a double ...
متن کاملTriple factorization of non-abelian groups by two maximal subgroups
The triple factorization of a group $G$ has been studied recently showing that $G=ABA$ for some proper subgroups $A$ and $B$ of $G$, the definition of rank-two geometry and rank-two coset geometry which is closely related to the triple factorization was defined and calculated for abelian groups. In this paper we study two infinite classes of non-abelian finite groups $D_{2n}$ and $PSL(2,2^{n})$...
متن کاملCayley graphs and coset diagrams
Let G be a finite group, and X a subset of G. The Cayley graph of G with respect to X , written Cay(G,X) has two different definitions in the literature. The vertex set of this graph is the group G. In one definition, there is an arc from g to xg for all g ∈ G and x ∈ X ; in the other definition, for the same pairs (g,x), there is an arc from g to gx. Cayley graphs are generalised by coset grap...
متن کامل